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Motivation 

• Many models can be trained on the same data 

• Typically none is strictly better than others 

– Recall “no free lunch theorem” 

• Can we “combine” predictions from multiple models? 

 

• Yes, typically with significant reduction of error! 
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Motivation 

• Combined prediction using Adaptive Basis Functions 
 
 
 

• M basis functions with own parameters 
• Weight / confidence of each basis function 
• Parameters including M trained using data 

 

• Another interpretation: automatically learning best representation of data for 
the task at hand 
 

• Difference with mixture models? 
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𝑓 𝑥 =  𝑤𝑚𝜙𝑚(𝑥; 𝑣𝑚)

𝑀

𝑖=1

 



Examples of Model Combinations 

• Also called Ensemble Learning 

• Decision Trees 

• Bagging 

• Boosting 

• Committee / Mixture of Experts 

• Feed forward neural nets / Multi-layer perceptrons 

• … 
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Decision Trees 

• Partition input space into cuboid regions 

• Simple model for each region 

• Classification: Single label; Regression: Constant real value 

• Sequential process to choose model per instance 

– Decision tree  
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Learning Decision Trees 

• Decision for each region 
– Regression: Average of training data for the region 
– Classification: Most likely label in the region 

 

• Learning tree structure and splitting values 
– Learning optimal tree intractable 

 

• Greedy algorithm 
– Find (node, dim., value) w/ largest reduction of “error” 

• Regression error: residual sum of squares 
• Classification: Misclassification error, entropy, … 

– Stopping condition 

• Preventing overfitting: Pruning using cross validation   
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Pros and Cons of Decision Trees 

• Easily interpretable decision process 

– Widely used in practice, e.g. medical diagnosis 

 

• Not very good performance 

– Restricted partition of space 

– Restricted to choose one model per instance 

– Unstable 
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Mixture of Supervised Models 

• Training using EM 
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Mixture of linear regression models Mixture of logistic regression models 

𝑓 𝑥 =  𝜋𝑘𝜙𝑘(𝑥, 𝑤)

𝑖

 



Conditional Mixture of Supervised Models 

• Mixture of experts 
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𝑓 𝑥 =  𝜋𝑘(𝑥)𝜙𝑘(𝑥, 𝑤)

𝑖

 



Bootstrap Aggregation / Bagging 

• Individual models (e.g. decision trees) may have high variance along 
with low bias 
 

• Construct M bootstrap datasets 
• Train separate copy of predictive model on each 
• Average prediction over copies 

 
 

• If the errors are uncorrelated, then bagged error reduces linearly with 
M  
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𝑓 𝑥 =
1

𝑀
 𝑓𝑚(𝑥)

𝑖

 



Random Forests 

• Training same algorithm on bootstraps creates correlated errors 

 

• Randomly choose (a) subset of variables and (b) subset of training 
data 

 

• Good predictive accuracy 

• Loss in interpretability 
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Boosting 

• Combining weak learners, 𝜖-better than random 
– E.g. Decision stumps 

 

• Sequence of weighted datasets 

• Weight of data point in each iteration proportional to no of 
misclassifications in earlier iterations 

 

• Specific weighting scheme depends on loss function 

• Theoretical bounds on error 
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Example loss functions and algorithms 

• Squared error 𝑦𝑖 − 𝑓 𝑥𝑖
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• Absolute error |𝑦𝑖 − 𝑓(𝑥𝑖)| 

 

• Squared loss 1 − 𝑦 𝑖𝑓(𝑥𝑖)
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• 0-1 loss 𝐼(𝑦 𝑖 ≠ 𝑓(𝑥𝑖)) 

• Exponential loss exp(−𝑦 𝑖𝑓(𝑥𝑖)) 

• Logloss 
1

log 2
log(1 + 𝑒−𝑦 𝑖𝑓(𝑥𝑖)) 

• Hinge loss 1 − 𝑦 𝑖𝑓 𝑥𝑖 + 
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Example: AdaBoost 
• Binary classification problem + Exponential loss 

 

1. Initialize 𝑤𝑛
(1)

=
1

𝑁
 

2. Train classifier 𝑦𝑚(𝑥) minimizing  𝑤𝑛
𝑚

𝐼(𝑦𝑚 𝑥𝑛 ≠ 𝑦𝑛)𝑛  

3. Evaluate 𝜖𝑚 =
 𝑤𝑛

𝑚
𝐼 𝑦𝑚 𝑥𝑛 ≠𝑦𝑛𝑛

 𝑤𝑛
𝑚

  𝑛

 and 𝛼𝑚 = log
1−𝜖𝑚

𝜖𝑚
 

4. Update wts 𝑤𝑛
(𝑚+1)

= 𝑤𝑛
(𝑚)

exp{𝛼𝑚𝐼(𝑦𝑚 𝑥𝑛 ≠ 𝑦𝑛)} 

5. Predict 𝑓𝑀 𝑥 = 𝑠𝑔𝑛( 𝛼𝑚𝑦𝑚(𝑥)𝑀
𝑖=1 ) 
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Neural networks: Multilayer Perceptrons 

• Multiple layers of logistic regression models 

• Parameters of each optimized by training 

 

• Motivated by models of the brain 

• Powerful learning model regardless 

15 



LR and R remembered … 

• Linear models with fixed basis functions 

 

 

• Fixed basis functions 

• Non-linear transformation 

 

• 𝜙𝑖  linear followed by non-linear transformation 
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𝑦 𝑥;𝑤, 𝑣 = ℎ(  𝑤𝑘𝑗  𝑔(  𝑣𝑗𝑖𝑥𝑖

𝑖=1 𝑡𝑜 𝐷

)

𝑗=1 𝑡𝑜 𝑀

) 

𝑦 𝑥,𝑤 = 𝑓( 𝑤𝑖𝜙𝑖(𝑥))

𝑖

 



Feed-forward network functions 

• M linear combinations of input variables 
 

 
• Apply non-linear activation function 

 
• Linear combinations to get output activations 

 
 

• Apply output activation function to get outputs  
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𝑎𝑗 =  𝑣𝑗𝑖𝑥𝑖

𝑖=1 𝑡𝑜 𝐷

 

𝑧𝑗 = 𝑔(𝑎𝑗) 

𝑏𝑘 =  𝑤𝑘𝑗𝑧𝑗
𝑗=1 𝑡𝑜 𝑀

 

𝑦𝑘 = ℎ(𝑏𝑘) 



Network Representation 
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Easy to generalize to multiple layers 

𝑥𝐷 

𝑥1 

𝑎𝑀 

𝑎1 

𝑧𝑀 

𝑧1 

𝑏1 

𝑏𝐾 

𝑦1 

𝑦𝐾  

𝑥𝑖 𝑎𝑗 𝑧𝑗 𝑏𝑘  𝑦𝑘  

𝑔 

ℎ 

𝑣 

𝑣𝑗𝑖 

𝑤 

𝑤𝑘𝑗 

𝑖𝑛𝑝𝑢𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ℎ𝑖𝑑𝑑𝑒𝑛 



Power of feed-forward networks 

• Universal approximators 

 

 

 

 

• Why are >2 layers needed? 
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A 2 layer network with linear outputs can uniformly approximate any 
smooth continuous function with arbitrary accuracy given sufficient number 
of nodes in hidden layer 



Training 

• Formulate error function in terms of weights 

 

 

 

• Optimize weights using gradient descent 

 

 

• Deriving the gradient looks complicated because of feed-forward … 

20 

𝐸 𝑤, 𝑣 =  𝑦 𝑥𝑛; 𝑤, 𝑣 − 𝑦𝑛
2

𝑖=1 𝑡𝑜 𝑁

 

𝑤, 𝑣 (𝑡+1) = 𝑤, 𝑣 (𝑡) − 𝜂𝛻𝐸( 𝑤, 𝑣 (𝑡)) 



Error Backpropagation 

• Full gradient: sequence of local computations and propagations 
over the network 
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𝜕𝐸
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𝑛
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𝑘
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𝑘
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Backpropagation Algorithm 

1. Apply input vector 𝑥𝑛 and compute derived variables 𝑎𝑗 , 𝑧𝑗 , 𝑏𝑘, 𝑦 𝑘 

2. Compute 𝛿𝑛𝑘
𝑤  at all output nodes 

3. Back propagate 𝛿𝑛𝑘
𝑤  to compute 𝛿𝑛𝑗

𝑣  at all hidden nodes 

4. Compute derivatives 
𝜕𝐸𝑛

𝛿𝑤𝑘𝑗
 and 

𝜕𝐸𝑛

𝛿𝑣𝑗𝑖
 

5. Batch: Sum derivatives over all input vectors 

 

 

• Vanishing gradient problem 
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Neural Network Regularization 

• Given such a large number of parameters, preventing overfitting is 
vitally important 
 

• Choosing the number of layers + no of hidden nodes 
• Controlling the weights 

– Weight decay 

• Early stopping 
• Weight sharing 
• Structural regularization 

– Convolutional neural networks for invariances in image data 
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So… Which classifier is the best in practice? 
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• Low dimensions (9-200) 

1. Boosted decision trees 

2. Random forests 

3. Bagged decision trees 

4. SVM 

5. Neural nets 

6. K nearest neighbors 

7. Boosted stumps 

8. Decision tree 

9. Logistic regression 

10. Naïve Bayes 

• High dimensions (500-100K) 

1. HMC MLP 

2. Boosted MLP 

3. Bagged MLP 

4. Boosted trees 

5. Random forests 



Usage Notes 

• A lot of slides are adopted from the presentations and documents published on internet by experts who 
know the subject very well. 

• I would like to thank  who prepared slides and documents.  
• Also, these slides are made publicly available on the web for anyone to use 
• If you choose to use them, I ask that you alert me of any mistakes which were made and allow me the 

option of incorporating such changes (with an acknowledgment) in my set of slides. 

 
      Sincerely, 
      Dr. Cahit Karakuş 
      cahitkarakus@gmail.com 


