
Data Combining Models

Dr. Cahit Karakuş

Motivation

• Many models can be trained on the same data

• Typically none is strictly better than others

– Recall “no free lunch theorem”

• Can we “combine” predictions from multiple models?

• Yes, typically with significant reduction of error!

2

Motivation

• Combined prediction using Adaptive Basis Functions

• M basis functions with own parameters
• Weight / confidence of each basis function
• Parameters including M trained using data

• Another interpretation: automatically learning best representation of data for
the task at hand

• Difference with mixture models?

3

𝑓 𝑥 = 𝑤𝑚𝜙𝑚(𝑥; 𝑣𝑚)

𝑀

𝑖=1

Examples of Model Combinations

• Also called Ensemble Learning

• Decision Trees

• Bagging

• Boosting

• Committee / Mixture of Experts

• Feed forward neural nets / Multi-layer perceptrons

• …

4

Decision Trees

• Partition input space into cuboid regions

• Simple model for each region

• Classification: Single label; Regression: Constant real value

• Sequential process to choose model per instance

– Decision tree

5

Learning Decision Trees

• Decision for each region
– Regression: Average of training data for the region
– Classification: Most likely label in the region

• Learning tree structure and splitting values
– Learning optimal tree intractable

• Greedy algorithm
– Find (node, dim., value) w/ largest reduction of “error”

• Regression error: residual sum of squares
• Classification: Misclassification error, entropy, …

– Stopping condition

• Preventing overfitting: Pruning using cross validation

6

Pros and Cons of Decision Trees

• Easily interpretable decision process

– Widely used in practice, e.g. medical diagnosis

• Not very good performance

– Restricted partition of space

– Restricted to choose one model per instance

– Unstable

7

Mixture of Supervised Models

• Training using EM

8

Mixture of linear regression models Mixture of logistic regression models

𝑓 𝑥 = 𝜋𝑘𝜙𝑘(𝑥, 𝑤)

𝑖

Conditional Mixture of Supervised Models

• Mixture of experts

9

𝑓 𝑥 = 𝜋𝑘(𝑥)𝜙𝑘(𝑥, 𝑤)

𝑖

Bootstrap Aggregation / Bagging

• Individual models (e.g. decision trees) may have high variance along
with low bias

• Construct M bootstrap datasets
• Train separate copy of predictive model on each
• Average prediction over copies

• If the errors are uncorrelated, then bagged error reduces linearly with
M

10

𝑓 𝑥 =
1

𝑀
 𝑓𝑚(𝑥)

𝑖

Random Forests

• Training same algorithm on bootstraps creates correlated errors

• Randomly choose (a) subset of variables and (b) subset of training
data

• Good predictive accuracy

• Loss in interpretability

11

Boosting

• Combining weak learners, 𝜖-better than random
– E.g. Decision stumps

• Sequence of weighted datasets

• Weight of data point in each iteration proportional to no of
misclassifications in earlier iterations

• Specific weighting scheme depends on loss function

• Theoretical bounds on error

12

Example loss functions and algorithms

• Squared error 𝑦𝑖 − 𝑓 𝑥𝑖
2

• Absolute error |𝑦𝑖 − 𝑓(𝑥𝑖)|

• Squared loss 1 − 𝑦 𝑖𝑓(𝑥𝑖)
2

• 0-1 loss 𝐼(𝑦 𝑖 ≠ 𝑓(𝑥𝑖))

• Exponential loss exp(−𝑦 𝑖𝑓(𝑥𝑖))

• Logloss
1

log 2
log(1 + 𝑒−𝑦 𝑖𝑓(𝑥𝑖))

• Hinge loss 1 − 𝑦 𝑖𝑓 𝑥𝑖 +

13

Example: AdaBoost
• Binary classification problem + Exponential loss

1. Initialize 𝑤𝑛
(1)

=
1

𝑁

2. Train classifier 𝑦𝑚(𝑥) minimizing 𝑤𝑛
𝑚

𝐼(𝑦𝑚 𝑥𝑛 ≠ 𝑦𝑛)𝑛

3. Evaluate 𝜖𝑚 =
 𝑤𝑛

𝑚
𝐼 𝑦𝑚 𝑥𝑛 ≠𝑦𝑛𝑛

 𝑤𝑛
𝑚

 𝑛

 and 𝛼𝑚 = log
1−𝜖𝑚

𝜖𝑚

4. Update wts 𝑤𝑛
(𝑚+1)

= 𝑤𝑛
(𝑚)

exp{𝛼𝑚𝐼(𝑦𝑚 𝑥𝑛 ≠ 𝑦𝑛)}

5. Predict 𝑓𝑀 𝑥 = 𝑠𝑔𝑛(𝛼𝑚𝑦𝑚(𝑥)𝑀
𝑖=1)

14

Neural networks: Multilayer Perceptrons

• Multiple layers of logistic regression models

• Parameters of each optimized by training

• Motivated by models of the brain

• Powerful learning model regardless

15

LR and R remembered …

• Linear models with fixed basis functions

• Fixed basis functions

• Non-linear transformation

• 𝜙𝑖 linear followed by non-linear transformation

 16

𝑦 𝑥;𝑤, 𝑣 = ℎ(𝑤𝑘𝑗 𝑔(𝑣𝑗𝑖𝑥𝑖

𝑖=1 𝑡𝑜 𝐷

)

𝑗=1 𝑡𝑜 𝑀

)

𝑦 𝑥,𝑤 = 𝑓(𝑤𝑖𝜙𝑖(𝑥))

𝑖

Feed-forward network functions

• M linear combinations of input variables

• Apply non-linear activation function

• Linear combinations to get output activations

• Apply output activation function to get outputs

17

𝑎𝑗 = 𝑣𝑗𝑖𝑥𝑖

𝑖=1 𝑡𝑜 𝐷

𝑧𝑗 = 𝑔(𝑎𝑗)

𝑏𝑘 = 𝑤𝑘𝑗𝑧𝑗
𝑗=1 𝑡𝑜 𝑀

𝑦𝑘 = ℎ(𝑏𝑘)

Network Representation

18

Easy to generalize to multiple layers

𝑥𝐷

𝑥1

𝑎𝑀

𝑎1

𝑧𝑀

𝑧1

𝑏1

𝑏𝐾

𝑦1

𝑦𝐾

𝑥𝑖 𝑎𝑗 𝑧𝑗 𝑏𝑘 𝑦𝑘

𝑔

ℎ

𝑣

𝑣𝑗𝑖

𝑤

𝑤𝑘𝑗

𝑖𝑛𝑝𝑢𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ℎ𝑖𝑑𝑑𝑒𝑛

Power of feed-forward networks

• Universal approximators

• Why are >2 layers needed?

19

A 2 layer network with linear outputs can uniformly approximate any
smooth continuous function with arbitrary accuracy given sufficient number
of nodes in hidden layer

Training

• Formulate error function in terms of weights

• Optimize weights using gradient descent

• Deriving the gradient looks complicated because of feed-forward …

20

𝐸 𝑤, 𝑣 = 𝑦 𝑥𝑛; 𝑤, 𝑣 − 𝑦𝑛
2

𝑖=1 𝑡𝑜 𝑁

𝑤, 𝑣 (𝑡+1) = 𝑤, 𝑣 (𝑡) − 𝜂𝛻𝐸(𝑤, 𝑣 (𝑡))

Error Backpropagation

• Full gradient: sequence of local computations and propagations
over the network

21

𝜕𝐸

𝜕𝑤
=

𝜕𝐸𝑛

𝜕𝑤
𝑛

𝜕𝐸𝑛

𝜕𝑤𝑘𝑗
=

𝜕𝐸𝑛

𝜕𝑏𝑛𝑘

𝜕𝑏𝑛𝑘

𝜕𝑤𝑘𝑗
= 𝛿𝑛𝑘

𝑤 𝑧𝑛𝑗

𝜕𝐸𝑛

𝜕𝑣𝑗𝑖
=

𝜕𝐸𝑛

𝜕𝑎𝑛𝑗

𝜕𝑎𝑛𝑗

𝜕𝑣𝑗𝑖
= 𝛿𝑛𝑗

𝑣 𝑥𝑛𝑖

𝛿𝑛𝑗
𝑣 =

𝜕𝐸𝑛

𝜕𝑏𝑛𝑘

𝜕𝑏𝑛𝑘

𝜕𝑎𝑛𝑗
𝑘

= 𝛿𝑛𝑘
𝑤 𝑤𝑘𝑗𝑔′(𝑎𝑛𝑗)

𝑘

𝛿𝑛𝑘
𝑤 = 𝑦 𝑛𝑘 − 𝑦𝑛𝑘 O

u
tp

u
t

la
ye

r
H

id
d

en
 la

ye
r

𝑥𝑖 𝑎𝑗 𝑧𝑗 𝑏𝑘 𝑦 𝑘

ℎ
𝑣𝑗𝑖 𝑤𝑘𝑗

𝛿𝑛𝑗
𝑣 𝛿𝑛𝑘

𝑤

𝑔

𝑦𝑘

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟

Backpropagation Algorithm

1. Apply input vector 𝑥𝑛 and compute derived variables 𝑎𝑗 , 𝑧𝑗 , 𝑏𝑘, 𝑦 𝑘

2. Compute 𝛿𝑛𝑘
𝑤 at all output nodes

3. Back propagate 𝛿𝑛𝑘
𝑤 to compute 𝛿𝑛𝑗

𝑣 at all hidden nodes

4. Compute derivatives
𝜕𝐸𝑛

𝛿𝑤𝑘𝑗
 and

𝜕𝐸𝑛

𝛿𝑣𝑗𝑖

5. Batch: Sum derivatives over all input vectors

• Vanishing gradient problem

22

Neural Network Regularization

• Given such a large number of parameters, preventing overfitting is
vitally important

• Choosing the number of layers + no of hidden nodes
• Controlling the weights

– Weight decay

• Early stopping
• Weight sharing
• Structural regularization

– Convolutional neural networks for invariances in image data

23

So… Which classifier is the best in practice?

24

• Low dimensions (9-200)

1. Boosted decision trees

2. Random forests

3. Bagged decision trees

4. SVM

5. Neural nets

6. K nearest neighbors

7. Boosted stumps

8. Decision tree

9. Logistic regression

10. Naïve Bayes

• High dimensions (500-100K)

1. HMC MLP

2. Boosted MLP

3. Bagged MLP

4. Boosted trees

5. Random forests

Usage Notes

• A lot of slides are adopted from the presentations and documents published on internet by experts who
know the subject very well.

• I would like to thank who prepared slides and documents.
• Also, these slides are made publicly available on the web for anyone to use
• If you choose to use them, I ask that you alert me of any mistakes which were made and allow me the

option of incorporating such changes (with an acknowledgment) in my set of slides.

 Sincerely,
 Dr. Cahit Karakuş
 cahitkarakus@gmail.com

